227

Photochemical Generation of CO₃⁻⁻ Radicals in Neutral Aqueous Solution

By VIRGIL W. COPE and MORTON Z. HOFFMAN*

(Department of Chemistry, Boston University, Boston, Massachusetts 02215)

Summary Flash photolysis of $Co(NH_3)_4CO_3^+$ in neutral aqueous solution generates the CO_3^- radical.

The CO_3^- radical can be generated pulse-radiolytically¹ by attack of OH radicals on CO_3^{2-} . However, the solution must be strongly alkaline in order to maintain the carbonate in the CO_3^{2-} form; HCO_3^- reacts very much more slowly with OH than does CO_3^{2-} . This factor does not permit CO_3^- to be generated conveniently in neutral solution, ruling out any study of the reactivity of the radical with substrates, such as enzymes, at biologically meaningful pH values. The CO_3^- radical would be expected to act as an oxidizing agent reacting *via* electron or H atom transfer and as such could have implications for the mechanism of enzymatic inactivation in radiation-damaged biological systems.² The CO_3^- radical can also be generated photochemically in the flash photolysis³ of HCO_3^- and CO_3^{2-} . However, these ions absorb only at very short wavelengths (*ca.* 200 nm) which severely restricts their utility as a source of CO_3^- .

The 254 nm continuous photolysis of $Co(NH_3)_4CO_3^+$ (as the ClO_4^- salt) in neutral solution (phosphate buffer)

produces Co^{2+} (ϕ 0.064), NH_3 , and $\text{Co}(\text{NH}_3)_4(\text{OH}_2)_2^{3+}$ (ϕ < 0.1). The flash photolysis of the complex $(5-9 \times 10^{-5})$ M; pH 6.44) yields two transients, one of which shows a tail absorption at $\lambda < 350$ nm, decays slowly via first-order kinetics, and is identified as Co(NH₃)₄(OH₂)CO₃+. The other transient species shows λ_{\max} 600 nm and decays via second-order kinetics and is identified as CO3-. Taking $\epsilon_{600} = 1830 \text{ m}^{-1} \text{ cm}^{-1}$,¹ a value of $2k = 1.1 \times 10^8 \text{ m}^{-1} \text{ s}^{-1}$ is obtained; the dependence of 2k on ionic strength is in the same sense as has been described before.¹ The CO₃radical clearly arises from intramolecular electron transfer resulting from irradiation of the ligand-to-metal chargetransfer band of the complex and its quantum yield of formation can be identified with that of Co^{2+} .

The presence of O_2 in the system has no effect on either the intensity or the rate of decay of the absorption. The introduction of oxidizable non-absorbing scavengers into the system converts the normal second-order decay of the radical into pseudo first-order with the observed rate constant varying linearly with the concentration of the scavenger. The Table shows $k(CO_3^- + S)$ for a number of scavengers. In comparison, the values of k for $(-SCH_2 \cdot CH_2 \cdot CH_2$ ·CO₂H)₂ and cysteine as scavengers are greater than 10⁷ M^{-1} s⁻¹ indicating the increased reactivity of the radical for molecules containing the disulphide linkage, presumably owing to a change in the site and mechanism of attack.

TABLE

Scavenger	$k(CO_{-} \perp S) = M^{-1} s^{-1} a$
MeOH	9.6×10^3
Pr ¹ OH	4.0×10^{4}
ButOH	1.6×10^2
Formate	$6.6 imes 10^4$

^a At pH 6.44

The advantages of $Co(NH_3)_4CO_3^+$ as a photochemical source of CO_3^- radicals in neutral solution are as follows: (i) the complex is easy to synthesize,⁴ (ii) it absorbs strongly $(\epsilon > 10^3$ M⁻¹ cm⁻¹) at $\lambda < 280$ nm and weakly ($\epsilon < 10^2$ M⁻¹ cm⁻¹) at higher λ , and (iii) the generation of Co²⁺ serves as an internal actinometer. However, the following drawbacks must also be noted: (i) the complex undergoes acidcatalysed thermal decarboxylation⁵ to give $Co(NH_3)_4(OH_2)_2^{3+}$ with pH 4 being the practical lower pH limit for this work; base hydrolysis in alkaline solution is very slow,⁵ (ii) flash photolysis also generates the aquo-carbonato-intermediate, (iii) $\phi(CO_3^{-})$ has only a moderate value. In balance, however, the generation of CO_a^- in neutral solution by this technique has obvious advantages over existing methods and provides a means of studying the reactivity of the radical with a wide range of scavengers.

We thank the National Science Foundation for financial support.

(Received, 8th November 1971; Com. 1931.)

¹ J. L. Weeks and J. Rabani, J. Phys. Chem., 1966, 70, 2100; G. E. Adams, J. W. Boag, and B. D. Michael, Trans. Faraday Soc., 1965, 61, 1674.

²G. E. Adams, J. E. Aldrich, R. H. Bisby, R. B. Cundall, J. L. Redpath, and R. L. Willson, Radiation Res., in the press.

E. Hayon and J. J. McGarvey, J. Phys. Chem., 1967, 71, 1472; D. Behar, G. Czapski, and I. Duchovny, *ibid.*, 1970, 74, 2206.
G. Schlessinger, Inorg. Synth., 1960, 6, 173.

⁵ T. P. Dasgupta and G. M. Harris, J. Amer. Chem. Soc., 1969, 91, 3207.